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I believe I shall best introduce the phenomenon by describing the circumstances of my own first 

acquaintance with it. I was observing the motion of a boat which was rapidly drawn along a channel by a 

pair of horses, when the boat suddenly stopped - not so the mass of water in the channel which it had put 

in motion; it accumulated round the prow of the vessel in a state of violent agitation, then suddenly 

leaving it behind, rolled forward with great velocity, assuming the form of a large solitary wave 

elevation, a rounded, smooth and well-defined heap of water, which continued its course along the 

channel apparently without change of form or diminution of speed. I followed on horseback, and overtook 

it still rolling on at a rate of some eight to nine miles an hour, preserving its original figure some thirty 

feet long and a foot to a foot and a half in height. Its height gradually diminished, and after a chase of 

one or two miles I lost it in the windings of the channel. 
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ABSTRACT 
 

INTRODUCTION 

The major challenge for higher dimensional photonic crystals is in fabrication of these structures, 

with sufficient precision to prevent scattering losses blurring the crystal properties and with 

processes that can be robustly mass produced. One promising method of fabrication for two- 

dimensionally periodic photonic crystals is a photonic-crystal fiber, such as a "holey fiber". 

Using fiber draw techniques developed for communications fiber it meets these two 

requirements, and photonic crystal fibers are commercially available. Another promising method 

for developing two-dimensional photonic crystals is the so-called photonic crystal slab. These 

structures consist of a slab of material (such as silicon) which can be patterned using techniques 

borrowed from the semiconductor industry. Such chips offer the potential to combine photonic 

processing with electronic processing on a single chip. 

For three dimensional photonic crystals various technique shave been used including 

photolithography and etching techniques similar to those used for integrated circuits. Some of 

these techniques are already commercially available. To circumvent nanotechnological methods 

with their complex machinery, alternate approaches have been followed to grow photonic 

crystals as self-assembled structures from colloidal crystals. 

Mass-scale 3D photonic crystal films and fibers can now be produced using a shear-assembly 

technique which stacks 200-300 nm colloidal polymer spheres into perfect films of fcc lattice. 

Because the particles have a softer transparent rubber coating the films can be stretched and 

molded, tuning the photonic bandages and producing striking structural color effects. 
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SPATIAL SOLITONS: 

Fig. 1 “How a lens works” 

In order to understand how a spatial soliton can exist, we have to make some 

considerations about a simple convex lens. As shown in the fig. 2.1, an optical field approaches 

the lens and then it is focused. The effect of the lens is to introduce a non-uniform phase change 

that causes focusing. This phase change is a function of the space and can be represented with a 

, whose shape is approximately represented in the figure. 

 The phase change can be expressed as the product of the phase constant and the width of the 

path the field has covered. We can write it as: 

 spatial solitons: the nonlinear effect can balance the diffraction. The electromagnetic field 

can change the refractive index of the medium while propagating, thus creating a 

structure similar to a graded-index fiber. If the field is also a propagating mode of the 

guide it has created, then it will remain confined and it will propagate without changing 

its shape 

 temporal solitons: if the electromagnetic field is already spatially confined, it is possible 

to send pulses that will not change their shape because the nonlinear effects will balance 

the dispersion. Those solitons were discovered first and they are often simply referred as 

"solitons" in optics. 

 

TYPES OF SOLITONS: 

In optics, the term soliton is used to refer to any optical field that does not change during 

propagation because of a delicate balance between nonlinear and linear effects in the medium. 

There are two main kinds of solitons: 
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where L(x) is the width of the lens, changing in each point with a shape that is the same 

of because k0 and n are constants. In other words, in order to get a focusing effect we just 

have to introduce a phase change of such a shape, but we are not obliged to change the width. If 

we leave the width L fixed in each point, but we change the value of the refractive index n(x) we 

will get exactly the same effect, but with a completely different approach. 

That's the way graded-index fibers work: the change in the refractive index introduces a 

focusing effect that can balance the natural diffraction of the field. If the two effects balance each 

other perfectly, then we have a confined field propagating within the fiber. 

Spatial solitons are based on the same principle: the Kerr effect introduces a Self-phase 

modulation that changes the refractive index according to the intensity: 

 

 

 
If I(x) has a shape similar to the one shown in the figure, then we have created the phase 

behavior we wanted and the field will show a self-focusing effect. In other words, the field 

creates a fiber-like guiding structure while propagating. If the field creates a fiber and it is the 

mode of such a fiber at the same time, it means that the focusing nonlinear and diffractive linear 

effects are perfectly balanced and the field will propagate forever without changing its shape (as 

long as the medium does not change and if we can neglect losses, obviously). In order to have a 

self-focusing effect, we must have a positive n2, otherwise we will get the opposite effect and we 

will not notice any nonlinear behavior. 

 
RESULT AND DISCUSSION 

 
Recently, a variety of two- and three-dimensional (2D and 3D) solitons have been 

investigated in models based on the nonlinear Schrödinger (NLS) or Gross-Pitaevskii (GP) 

equations with a spatially periodic potential and cubic nonlinearity, see a review. The physical 

models of this type emerge in the context of Bose-Einstein condensation (BEC) [2, 3, 4, 5, 6, 7], 

where the periodic potential is created as an optical lattice (OL), i.e., interference pattern formed 

by coherent beams illuminating the condensate, and in nonlinear optics, where similar models 

apply to photonic crystals. A different but allied setting is provided by a cylindrical OL (“Bessel 

lattice”), which can also support stable 2D and 3D solitons. Additionally, models combining a 

periodic lattice potential and saturable nonlinearity give rise to 2D solitons, that were predicted 

in Ref. [11] and observed in several experiments. in photorefractive media, including 

fundamental solitons and vortices [13]. It is also relevant to mention that experimental 

observation of spatiotemporal self-focusing of light in silica waveguide arrays, in the region of 

anomalous group-velocity dispersion (GVD), was reported in Ref.. 
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In models with the cubic nonlinearity, these solutions were investigated in a quasi- 

analytical form, which combines the variational approximation (VA) to predict the shape of the 

solitons, and the Vakhitov-Kolokolov (VK) criterion to examine their stability. Final results were 

provided by numerical methods, relying upon direct simulations of the underlying NLS/GP 

equations. A conclusion obtained by means of these methods is that, unlike their 1D 

counterparts, multi-dimensional solitons in periodic potentials can exist only in a limited domain 

of the (N, ε) plane, where N and ε are the norm of the solution and strength of the OL potential, 

respectively. The most essential limitation on the existence domain of 2D solitons is that N 

cannot be too small (in a general form, a minimum value of the norm, as a necessary condition 

for the existence of 2D solitons supported by lattice potentials, was discussed in Ref.. Unlike it, e 

may be arbitrarily small, as even at ε = 0 the 2D NLS equation has a commonly known weakly 

unstable solution in the form of the Townes soliton, at a single value of the norm, N = NT [18] 

(NT ≈ 11.7 for the NLS equation in the usual 2D form, 

 
. 

 
Small finite ε gives rise to a narrow stability region, 

 
0 < NT - N < (∆N)max ~ ε (1) 

for the 2D solitons. Crossing the lower border of the existence domain (1) leads to disintegration 

of the localized state into linear Bloch waves (radiation). 

In the case of the attractive cubic nonlinearity (which corresponds to BEC where atomic 

collisions are characterized by a negative scattering length, while this is the case of the normal, 

self-focusing Kerr effect), 2D and 3D solitons can be stabilized not only by the potential lattice 

whose dimension is equal to that of the ambient space, but also by low-dimensional periodic 

potentials, whose dimension is smaller by one, i.e., 2D and 3D solitons can be stabilized by a 

quasi-1D or quasi-2D OL, respectively [in the former case, the qualitative estimate (1) for the 

width of the stability region at small e is correct too]; however, 3D solitons cannot be stabilized 

by a quasi-1D lattice potential [this is possible if the 1D potential is applied in combination with 

the Feshbach-resonance management, i.e., periodic reversal of the sign of the nonlinearity 

coefficient, or in combination with dispersion management, i.e., periodically alternating sign of 

the local GVD coefficient. Solitons can exist in such settings because the attractive nonlinearity 

provides for stable self-localization of the wave function in the free direction (one in which the 2 

low-dimensional potential does not act), essentially the same way as in the 1D NLS equation, 

and, simultaneously, the lattice stabilizes the soliton in the other directions (in the 3D model with 

the quasi-1D OL potential, the self-localization in the transverse 2D subspace, where the 

potential does not act, is possible too, but the resulting soliton is unstable, the same way as the 

above-mentioned Townes soliton). An important aspect of settings based on the low-dimensional 
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OL potentials is mobility of the solitons along the free direction, which opens the way to study 

collisions between solitons and related dynamical effects. 

In the case of defocusing nonlinearity, which corresponds to a positive scattering length 

in the BEC, or self-defocusing nonlinearity in optics (negative Kerr effect), the soliton cannot 

support itself in the free direction. Localization in that direction may be provided by an 

additional external confining potential; however, the resulting pulse is not a true 

multidimensional soliton, but rather a combination of a gap soliton (a weakly localized state 

created by the interplay of the repulsive nonlinearity and periodic potential,which was recently 

created experimentally in a 1D BEC in the direction(s) affected by the OL, and of a Thomas- 

Fermi state, directly confined by the external potential in the remaining direction. 

Thus, no soliton can be supported by a low-dimensional lattice in the BEC model (GP 

equation) with self-repulsion (the latter corresponds to the most common situation in the 

experiment. On the other hand, a new possibility may be considered in terms of nonlinear optics. 

Indeed, one may combine three physically relevant ingredients, viz., (i) an effective periodic 

potential in the transverse direction(s), while the medium is uniform in the propagation direction, 

(ii) Self-defocusing nonlinearity, and (iii) normal GVD. The latter is readily available, as most 

optical materials feature normal GVD, in compliance with its name. As concerns the negative 

cubic nonlinearity, it is possible in semiconductor waveguides, or may be engineered artificially, 

through the cascading mechanism, in a quadratic ally nonlinear medium with a proper 

longitudinal quasi-phase-matching. Also quite encouraging for the study of multidimensional 

solitons proposed in this work are recent observations of 1D and 2D solitons in optically induced 

waveguide arrays (photonic lattices) with self-defocusing nonlinearity. The setting outlined 

above can be realized in both 2D and 3D geometry, where the necessary transverse modulation 

of the refractive index is provided, respectively, by the transverse structure in a planar photonic- 

crystal waveguide, or in a photonic-crystal fiber. To the best of our knowledge, in either case the 

model is a novel one. A soliton in this medium, if it exists, will be of a mixed type: in the 

transverse direction(s), it is, essentially, a 1D or 2D spatial gap soliton, supported by the 

combination of the effective periodic potential and self-defocusing nonlinearity, while in the 

longitudinal direction it is a temporal soliton of the ordinary type, which is easily sustained by 

the joint action of the self-defocusing nonlinearity and normal GVD. Thus, one may anticipate 

stable spatiotemporal solitons, alias “light bullets”, in this model. Due to their mixed character, 

they may be called semi-gap solitons. The issue is of considerable interest in view of the lack of 

success in experiments aimed at the creation of “bullets” in more traditional nonlinear-optical 

settings. The only earlier proposed scheme for the stabilization of 2D spatiotemporal optical 

solitons in periodic structures, that we are aware of, assumed the use of a planar waveguide with 

constant self-focusing nonlinearity and longitudinal dispersion management. 

On the other hand, it is necessary to stress that, rigorously speaking, completely localized 

solutions cannot exist in the present model: its linear spectrum cannot give rise to any true 
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bandgap, in which genuine solitons could be found (see below); instead, one may expect the 

existence of quasi-solitons, consisting of a well-localized “body” and small non-vanishing “tails” 

attached to it. Nevertheless, we will produce families of solutions which seem as stable perfectly 

localized objects. This is possible because the “tails” may readily turn out to be so tiny that they 

remain completely invisible in numerical results (possibly being smaller than the error of the 

numerical scheme), and, of course, they will be invisible in any real experiment. An explanation 

to this feature is provided by the fact that bandgaps, which “almost exist” in the system‟s 

spectrum, do not exist in the strict sense because they are covered by linear modes with very 

large wave numbers. , in this case the amplitude of the above-mentioned tails (which are 

composed of the linear modes with very large wave numbers) is exponentially small. In fact, 

families of stable “practically existing” solitons in a second-harmonic-generating system with 

opposite signs of the GVD at the fundamental-frequency and second harmonics, where solitons 

cannot exist in the rigorous mathematical sense, were explicitly found in that system, in both 

multi-and one- dimensional settings. Implicitly (without discussion of this issue), “practically 

existing” solitons (although, in this case, they were unstable against small perturbations) were 

also found in a recent work , which was dealing with a 2D model of a planar nonlinear 

waveguide with the cubic nonlinearity, that features a Bragg grating in the longitudinal direction, 

and is uniform along the transverse coordinate. In the latter model, true solitons cannot exist, as 

the spectrum of the system does not support a full bandgap. 

CONCLUSION 

In this work, we have proposed a new type of the multidimensional model in nonlinear optics. It 

combines self-defocusing nonlinearity and normal group-velocity dispersion with periodic 

modulation of the local refractive index in the one or two transverse directions (in the 2D and 3D 

models, respectively). Strictly speaking, multidimensional (spatiotemporal) solitons cannot exist 

in media of this type, as the system‟s spectrum contains no true bandgap. Nevertheless, solitons 

which seem as completely localized ones are predicted by the variational approximation, and 

found in direct simulations. These solitons are solutions of a mixed type, as in the free 

(longitudinal, alias temporal) direction they are regular solitons, while in the transverse 

direction(s) they are objects of the gap-soliton type (hence the solution as a whole was called a 

semi-gap soliton). 
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